
Progressing
Network Automation

Moving from Script and Playbook to Model-Driven,
Intent-based Network Automation, and Orchestration

e-Book

Internet Protocol (IP) networks were designed to be
distributed and highly fault tolerant to disruptions
by being able to dynamically “route” network traffic
around outages or connectivity problems.

The network layer equipment, mostly made up
of routers and switches, were designed to be
configured as stand-alone devices, one-by-one,
using a low-level human readable format called
Command-Line-Interface (CLI), which at the
time was much simpler than other options that
had come before it. Over the past 20+ years,
nearly all computer networks are built based
on IP technologies. While protocol features
and hardware had evolved, most network
configuration changes are still being performed in
the same way – manual, one-by-one. As function
specific devices were added like firewalls, load
balancers, WAN optimizers, and wireless LAN
controllers the “defacto” configuration method via
CLI propagated to these devices as well. Network
devices are a significant capital expense (CAPEX)
and are typically deployed for a minimum of five

years, or much longer in most cases. This creates
a constant legacy of existing, older devices
known as a “brownfield” network. Brand new
deployments, of new campus switches or a new
data center, are known as “greenfield” networks.
As new network functions are deployed and new
vendors are introduced the unique CLI/semantic
required for each vendor causes significant
operational expense (OPEX) increase for the
Network Operations Center (NOC) to develop and
maintain the skill set required.

As protocols and features have been added
over the years, the configuration has become
significantly more complex and a highly
specialized skill set is required for initial and on-
going configuration management. Due to the
complication and cost of an outage, network
operators are very change averse and typically
space changes out and only perform them during
a scheduled maintenance window where a minor
outage could be tolerated.

The Current State of NetOps

Changes To The Network Can Introduce Risk From

Mis-configurations

Dependency issues

Vendor software vulnerabilities (a.k.a. as bugs)

Interoperability issues

Rev. A Jan 20222

While the “Software Defined Networking” (SDN)
movement intended to change the way networks
are configured and enable a programmable
network layer, controlled by adding a software
layer it has had limited success and is slow to
become mainstream due to the investment in
the legacy network and the significant changes
required to adopt SDN. SDN also is early in its
maturity with limited standardization and many
different definitions of what it actually is. SDN
in the data center is primarily overlay tunneling
that still relies on the existing underlay network.
SDN in the WAN, known as SD-WAN is very

vendor specific and generally requires a refresh
of the branch and headend devices, which is a
significant investment for a new technology that
is still developing rapidly. Most SDN technologies
do introduce a software-based network
controller which provides centralized control of
configuration and policy management along with
various monitoring capabilities. Organizations
adopting SDN in its early state often have to
build separate teams within their organizations
to support operations along with the traditional
legacy management teams.

Network
Operations

Network
Management

Policy
Violations

Network
Churn

Spent on
IT Operations
(in-house and
outsourced)

Of network
changes are
manual in

nature

Of policy
violations are

due to
human errors Of OpEx spent

on network
visibility and

troubleshooting

$60B
95%

70%

75%

Source: Cisco

Rev. A Jan 20223

The Network Operations (NetOps) team is typically made up of
several roles including Network Architects, Network Engineers, and
Network Operations Engineers/Technicians. Each has a unique skill set
contributing to the overall operations and management of the network.

Team

NetOps teams are known to have a long list of tools to manage the
network including monitoring, ticketing, asset management, software
and configuration management and more. While some tools are
based on well-known and adopted technologies, like Simple Network
Management Protocol (SNMP) used primarily for monitoring, others
are very fragmented and vendor specific. Lack of end-to-end network
visibility, shortage of skill set and fragmented management tools are
always among the top three complaints of NetOps teams.

Network Architect

•	 Network design and standardization
•	 Protocol expertise
•	 Cross-platform/vendor expertise
•	 Solution lifecycle management

Network Engineer

•	 Protocol expertise
•	 Vendor/Platform specialization
•	 Testing and validation
•	 Operating/managing a network

Network Operations Engineer/Technician

•	 Device/Service configuration
•	 Device/Service troubleshooting
•	 Management and ticketing systems
•	 Vendor/Platform specialization

Rev. A Jan 20224

One of the areas to point out is configuration
management. The current generation of
configuration management tools are single
vendor (or very single vendor focused) or are
“bulk update” tools which can push configuration
changes with very little intelligence or verification,

which can introduce more problems than they
solve. This results in a significant challenge to
implement and enforce policy across the network
when many changes are being performed
manually and ad-hoc in an attempt to quickly
resolve issues for a quick fix.

Tools

Enterprise IT is changing dramatically, largely
driven by compute virtualization and cloud-based
services. The changes in application development
are driving the need for more agility and support
for more frequent changes to the required
networking services performed by NetOps.

Implementing change in NetOps is difficult for
most IT organizations since they are operating a
business-critical network infrastructure and prefer
not to take risks that could cause expensive and
potentially embarrassing outages.

Monitoring
SNMP Based Monitoring

Flow monitoring

Protocol monitoring

Logs

Workflow/Ticketing
Trouble tickets

Change tickets

Asset
Management

Inventory

Capacity management

EoL/EoS

Operating System/
Patch Management

Vulnerabilities (PSIRTs)

Bugs (Field Notifications)

Out of maintenance (EoL/EoS)

Configuration
Management

Security Policy

QoS Policy

Access Control

Rev. A Jan 20225

Main Categories
People · Products · Process

For change to
be successful,

it has to be
driven across

People
Most IT organizations have network engineers or specialists who
have spent years becoming network experts, which includes
knowledge of the network protocols and various vendor CLI
and semantics to configure the devices. There is generally a
very specific path network engineers follow to become network
experts, moving from operations to engineering to design
and architecture. Engineers have become very comfortable
developing the low-level, vendor-specific syntax to configure
the network layer. Until recently, a programming background
was not a requirement for a network engineer. With the
increase in scale 1 and complexity manually configuring all
network nodes is no longer an option to keep up with the
business needs. Now, management is deciding how much
time and money to invest in training their network team to
be programmers. The engineers are also faced with a career
decision – whether to remain a network expert, potentially
becoming obsolete, or expanding their skill set to learn
programming and application programming interfaces (APIs).
In addition, the path to becoming a programmer for networks
is not as clear as engineering since there are a plethora of tools
and languages each requiring hundreds if not thousands of
hours to learn.

3
1

6

Products
As organizations dive into the world of network programming,
they may start with investigating SDN technology since it has
promised to make the network programmable. The real driver is
often not necessary to move to SDN but to have a mechanism to
automate manual tasks and keep up with the business demands
since the days of static network configurations are becoming
a thing of the past. The gap here is that most SDN solutions
require new networking hardware or are an over-the-top
software solution still leaving the underlying network to manage.
Enterprise IT wants the benefit of SDN without needing to deploy
and manage a new network be it physical or virtual.

Looking into the landscape of network automation tools
available, there currently seem to be two ends of the spectrum
and not much in between. At one end, you have programmer/
developer-oriented platforms, which require knowledge of
a programming language and the environment involving
dedicated servers, databases, code repositories and more. On
top of that, each area can have significant specialization for “front-
end” user interface design, middleware and back-end (database)
systems. At the other end of the spectrum, you have network
automation tools, which are point solutions providing a very
specific function like automating a QoS policy. These “tools” are
purpose-built and have very rigid functionality – not likely to meet
the ongoing and changing needs of most IT organizations. Some
point solutions also can even build full configuration files for
specific deployments like a spine-leaf data center, but again they
have very specific design limitations and must be a perfect fit.

The middle of the spectrum goes largely unserved. This would
be a platform that offers programmability to be customized to a
unique network solution but also provides some level of turn-key
solutions to address common pain points and tasks that are done
manually today. Current SDN solutions are primarily providing an
API on top of a network controller, which requires programming
to interface with the API since there is a lack of true network
applications, especially when it comes to multi-vendor networks.

2

Rev. A Jan 20227

Process
Finally, it comes down to the process and the overall motivation
for change to embrace network automation. If the organization
has a lot of resources and is able to hire a development team,
then the developer-oriented solutions could be a good fit. If
the organization has some specific pain and no development
resources and the point solutions available will address it, then that
could be a good fit however short lived once the network changes.
This is often the case and IT teams have many tools that largely
go unused. The key is to take a long-term, strategic approach to
the problem and decide the direction so that the cost involved to
hire, train and purchase software is returning sustained value to
the organization. What are best practices that companies with lean
IT can follow when looking to solve business pain points through
network automation? Why automate the network?

3

Automation provides standard benefits such as increased
efficiencies and performing tasks faster, cheaper and more
reliably versus manually. The issue with network automation is
that most current network engineers do not want to become
programmers and think that is the only path. Looking at the
automation landscape, there are three main approaches to
investigate: script based, script/playbook plus an automation
framework, and a new approach which is data-model driven and
enables automation without programming.

Why Automate the Network?

Efficiency Gains

Reduce human touch

Reduce errors
(misconfigurations)

Automate redundant tasks

Enable shifting of
resources to strategic
projects

Productivity Improvements

Increased speed/agility (of
configuration/deployment)

Improved quality

Deliver on more change requests
(volume of change)

Increased engineer
productivity (ability to manage
large network)

Cost Reduction

Eliminate or reduce
current spend

Eliminate or reduce future
spend

Reduce/re-purpose
headcount

Rev. A Jan 20228

The automation journey begins with an assessment to determine the current state, desired state and how to
acheive it. This includes asking:

What do I need to automate?

•	 Do I have a current network inventory including vendors, platforms, OS versions...etc.?
•	 For each platform what is the current state of the configuration (compared to any existing policy/

standard)?

What teams/network domains do I need to consider?

•	 Campus LAN, WAN, Data Center…etc.

What should I automate first?

•	 Is there a pressing business demand/strategic project to align with?
•	 Merger/acquisitions
•	 Migration or enabling a Software-as-a-Service (SaaS)
•	 Security vulnerability
•	 What are the top issues raised to NetOps? Is there a ticket system to gather this data?
•	 What type of changes has resulted in the inconsistent or error-prone configuration?
•	 What are the most time-consuming work tasks NetOps is currently performing manually?
•	 Are there compliance (internal or external) requirements to align with?
•	 Are there any current (known) security vulnerabilities that need to be addressed, possibly via an

OS upgrade?

What tools, platforms, products should I use?

•	 Have any tools, solutions been used and what was the result?
•	 What is the best solution available for the current issue and top priorities going forward?
•	 What have the shortcomings been of the legacy/existing toolset?
•	 What is the time to learn, onboard and maintain the products being considered?

For each initiative, what is the return-on-investment (ROI)?

This must be considered if dedicating significant man-hours and/or purchasing a product to
implement the automation.

Does automation in your organization means a low-value utility for simple changes, or does it consider the
lifecycle automation of devices/services?

Starting the Network Automation Journey

Rev. A Jan 20229

Strategic solutions are more likely to get
sponsorship from upper management and get
funding for products and training to accomplish
the task within a well-defined time frame. A
strategic approach should always consider the
lifecycle of the product/service. When a device
is initially deployed in the network it is referred
to as “Day Zero”. That initial configuration is
often straightforward to automate since it is new.
Day 1, day 2 …. day N are the ongoing changes
that occur. Some of these changes are well
designed and tested, other changes are based on
operations decision to address a problem in the
network – which can be a quick fix, but potentially
over time takes that device way out of compliance

with the standard/approved configuration. Proper
automation and change management control will
eliminate one-off changes which create problems
further in the lifecycle of managing those devices.
When implementing automation, it is critical to
think about the lifecycle management of the
network layer devices and the services being
provided to the business. As the application teams
move to a DevOps model for a more rapid, agile
deployment model the NetOps team will also
have to implement a dramatic change in their
process to keep up with the business needs.

Is The Need For Automation

A strategic example is to
implement automation of the
network policy for a unified
communication solution that
will improve communication
within the Enterprise.

A tactical example is to
automate the password
change on the network

devices instead of
performing it manually

every quarter.

Strategic Tactical

Rev. A Jan 202210

DevOps evolved, out of necessity, from the
software world. With the Waterfall development
model, there was a lengthy period of product
definition, and developers usually worked over a
several-month period of testing and essentially
developed a solution that was already out of
date. Agile was the next evolution in software
development, in which there is an understanding
that requirements are going to frequently change.
The idea is to get something out the door that
meets the requirements and then keep iterating
and adding to it. This started the trend of what’s
now known as DevOps, which is a streamlining of
the process from development to operations. With
DevOps, you have to be continually developing,
testing, integrating and deploying changes.
An abbreviation sometimes used for DevOps

is CI/CD, continuous integration/continuous
deployment. It’s a constant cycle of innovation
rather than a monolithic process. This enables
agility and responsiveness to the changing
business needs.

A similar phenomenon is happening in
networking. You can’t take six months to get a
feature out the door anymore. If your terms of
service or a business line need something in the
network, you need to get it to the network as soon
as possible. That’s where networking engineers
are at right now. This applies to networking from
the deployment and provisioning of new services
and features as well as the ongoing changes
needed to routing, security, QoS and other
policies on the network.

Moving NetOps towards the DevOps Model

VALUE

VALUE

VALUE
Risk

Risk

VALUE

ReleaseBuildDesign

TIME TO VALUE

Moving to an Agile Development Enables Faster Time to Value

Rev. A Jan 202211

The CI/CD Model is in Constant Motion
to �Generate Value to the Organization

Operations Cannot be the Barrier for
�the Agile Development to be Successful

Continuous
Integration

Continuous
Deployment

Continuous
Delivery Operate

Agile

Continuous
Integration

Continuous
Deployment

Continuous
Delivery Operate

Operations

Agile

Agile Release Process (blocked by Operations)

Rev. A Jan 202212

Network Automation 1.0:
Scripting (D.I.Y.)
Scripting is a general-purpose programming language that can be used for finance tracking,
sports teams management, automating a home, automating different tasks on a computer, or
creating a server configuration management tool (more on this later). The flexibility of scripting
makes it a viable choice for automating a network.

The first step in choosing scripting is selecting a language. Some of the mainstream scripting languages
to choose from (in no particular order) are Perl, Python, PHP, Ruby, and JavaScript. When making a
language choice, understanding the ecosystem around that language is important. Does the language
have libraries, frameworks, and a community to support the kind of application being created?

Python has emerged, in recent years, as a dominant choice for automating networks. Python has libraries
like Paramiko (to communicate via SSH to devices), Netmiko (built on Paramiko that has specific device
support for show commands, configuration command, etc.). It has frameworks for automated testing
of scripts. There are community resources (blog posts, videos, and podcasts) available around network
automation with Python.

Writing a script is not that hard. A motivated technical person could do it within a week or so for a
“simple” network configuration task. This depends on a good understanding of the task and the
knowledge of the script writer of the scripting language, used libraries, and used frameworks.

•	 If the goal is to have scripts usable beyond
just a person writing it then things get more
complicated. The script writer would have
to code the script with more logic to allow
other people to use it.

•	 If the script has parameters that control
the actions of the script, that the script
user enters, then logic has to be written to
validate that input.

•	 If the script is talking to multiple
networking devices then it would be
desirable to have a external data source for
the addresses and connection information
for the devices. That way the devices the
script acts on could change without the
script logic being changed.

•	 The script would need some output to
indicate its progress, if it errored where the
error was, and if it successfully completed.
A standard way should be created so each
script doesn’t have its own format.

•	 The script would need to be documented
in some way (at the very least that it
exists and what functionality it provides)
so that other people could use it. The
documentation should include what
parameters the script takes.

•	 If the script was complicated enough then
the script writer might have to make a
“preview” mode to show the script user
what would happen for the parameters
they entered without it actually happening.

Rev. A Jan 202213

Once this reusable script is created then general software development
questions have to be answered for managing the scripts themselves:

Source Control

 • Where is the script stored?
 • How do other authorized people modify the script for changes
 and bugs with the script?
 • How do you track changes to the script?

Issue/Change Tracking

 • How do you collect and document bugs and future changes in
 the scripts so they are managed and you know the status when
 they get fixed?

Release Management

 • Scripts should be versioned when made available so it is known
 what fixes/changes went into the script.
 • Should scripts be tested and verified in some way once they
 are released?

Using the Scripts

 • Is there a Graphical User Interface created for running scripts?
 Is it all command line driven?
 • Should there be some kind of authorization for running the
 script?
 • Where should the scripts run from? The user’s PC or a common
 server?
 • Is there a way to share device address and connection
 information between scripts?
 • How does this device information get updated?
 • Is there security for this data?

Rev. A Jan 202214

Python

While it can take months to investigate and begin to build the skill set in
the items listed above, most engineers will look to leverage what is most
used in the industry and for network automation, the language of choice is
currently Python.

Over the last ten or so years there has been a lot of vendors and community
development around using the Python language for network automation. As a
result, there are vendor and community-supported Python libraries to leverage
and accelerate the creation of a script. The Python approach will involve a
significant amount of coding, but far less than it ever used to be for network
automation. Beyond the jump start you get with the available libraries, Python
is also known to be a good beginner language since it is human readable
and does not require the pre-definition of variable types and functions, which
reduces the coding effort.

In short, what is Python and why is it the language of choice for network automation?

The Python Foundation provided this Executive Summary:

“Python is an interpreted, object-oriented, high-level programming
language with dynamic semantics. Its high-level, built-in data
structure, combined with dynamic typing and dynamic binding, makes
it very attractive for Rapid Application Development, as well as for use
as a scripting or glue language to connect existing components
together. Python’s simple, easy-to-learn syntax emphasizes readability
and therefore reduces the cost of program maintenance.”

Rev. A Jan 202215

Python is an interpreted language (it does not need to be
compiled), so the speed of write, test, and edit of the program
process is greatly increased. For simple scripts, if your script
fails, it can easily be debugged and edited to resolve the
issue and move forward. Using the interpreter also means that
Python is easily ported to a different type of operating system.
For example, Python can be developed on a Windows machine
and it can be easily ported to run on Linux or MAC OSes.
Python is also object-oriented so there is a high degree of re-
use that can be achieved. Python installs with a standard set of
libraries and can easily import functions and modules to meet
the use case desired.

Python offers an option for a NetOps person to become a scripter
and achieve some level of automation without becoming a full-blown
developer since it is easier to use than most other languages.

A challenge with D.I.Y. scripting is that often a small task is automated
and then that successful script gets added to and extended until the
simple script is now quite complex. To be successful with scripting
requires good code hygiene and developing a master plan to add
functionality while keeping specific functions working.

An important note about Python versions is that many users are in a
transition from Python v2.x to Python v3.x and Python 3 is not backward
compatible; however, the versions can coexist. Python v2.7 release has
gone end-of-life and is only getting security updates.

Python Skill Sets Required

 • Python Interpreter (shell)
 • Data types
 • Conditional logic
 • Containment
 • Functions and methods
 • File management
 • Creating programs
 • Modules and packages

Rev. A Jan 202216

As already covered, most (legacy) network devices are configured via CLI which requires a terminal
session (connection) with each device. While it is possible to use the Telnet protocol, pretty much all
devices in production will use SSH, a secure terminal protocol. Using SSH, commands are passed to the
device over a persistent connection and the device interprets them and responds with human readable
text output. SSH does not structure or encode the data, which is not ideal when programming, but most
legacy devices do not provide a programmatic interface like an API. Python offers third-party libraries to
help add this functionality. A few popular libraries to add are Pexpect, Paramiko, and Netmiko.

Python Pexpect Library

Pexpect is a pure Python module for spawning child
applications, controlling them, and responding to
expected patterns in their output. Pexpect allows
your script to spawn a child application and control
it as if a human were typing commands.

Pexpect launches or spawns another process and
watches over it in order to control the interaction.
It can be used to spawn a telnet (or SSH) session
to a network device, send commands, wait for an
expected output and send additional commands.

Python Paramiko Library

Paramiko is a Python implementation of the SSHv2
protocol. It simplifies the SSHv2 interaction with the
remote device. Paramiko only supports SSHv2 and
provides both client and server operations. It has
a hard dependency on the Cryptography library
which also must be loaded to use it.

Python Netmiko Library

The Netmiko library is a popular open source
Python library that simplifies SSH management to
network devices. It is built on top of the Paramiko
library. With support for over two dozen device
types, it is one of the most widely used libraries
for SSH to simplify the device connectivity and
commands used.

Using Python to Interact with Network Devices

These libraries among many others can be found at
https://pypi.org

They can be dynamically loaded into Python via an integrated software distribution called Python Package
Index (PyPI) and are loaded via the pip command. In addition, it is common to load Python packages from
source (GitHub, a public code repository and version control platform).

Rev. A Jan 202217

Data Models and Templates

In the context of scripts that interact with network
devices, this essentially means repeatable, reliable,
predictable interaction with the network device is a
requirement for a successful script.

Using the Python plus Pexpect/Paramiko approach
emulates a user on a terminal connection and
will enable a script to interact with a device, but
since it is working with non-structured data and
performing a “screen scrape” to capture the
output of the CLI, there is a chance you could have

inconsistent results if there is any variation on the
output. For example, if the output is many lines
of characters and there are extra spaces or line
breaks this can cause issues with the desired result
and create inconsistencies.

If the goal is to make reliable changes on many
devices, say hundreds or thousands, another
approach beyond scripting will be required to
ensure consistency in the results.

Python is an extremely flexible language that
can work with many data model formats and
templating languages. For data modeling, the
popular choices are XML, JSON, YAML, and YANG.
In general, all have pros and cons but certainly
can be helpful to leverage when developing
automation for network devices.

Templating is a common and well-known
practice in network engineering, although most

templates are built with native CLI or even using
Excel. When working with Python the most
popular templating language is Jinja since it is
built for Python. Working with Jinja can enable
the insertion of device-specific variables into
a configuration file when generating a unique
configuration for many devices. Jinja is another
3rd party package which can be installed using
the pip command from PyPI.

An example leveraging Jinja looks
like this to introduce variables into
a configuration template

interface {{ interface.name }}
description {{ interface.description }}

switchport access vlan {{ interface.vlan }}
switchport mode access

Rev. A Jan 202218

Often, when using Python for a network automation script, the best
practice will be to import data from another source (like a data model
or template) and use coding concepts, like loops and conditionals to
generate the desired native CLI configuration which is “rendered” upon
script execution. It is a common practice to keep Python syntax separate
from the actual data files (not embed it in the script), instead having it
defined in a separate file, most likely using a data modeling language
of choice. Many network vendors are already beginning to support data
model formats like JSON, XML, and YANG.

Scripting with Python Pros & Cons Summary

Pros

Free software download

Open source and strong
community

Flexible language to automate
networking (multi-vendor) and
full stack (compute, storage)

Simple tasks can be
automated fairly quickly with
basic scripts with the required
skill set

Python is easier than most
other languages to get
started with

Many network vendors have
example libraries to get
started

Cons

Significant skill development
required (time and training
required)

Scripts will vary significantly
based on author, design
choices and skill set

Scripts are often single
purpose and single-use,
requiring edits to the script
the next time they are needed
to make a change

Gets complex quickly to
automate complex networking
feature (like CERTs, Tunnels,
Routing, QoS…etc.)

Difficult to maintain
(dependencies, software
versions, script edit revisions)

Difficult to transition to other
users/operators

Lack of a UI and other
integrated functions NetOps
has gotten used to with other
management tools

Rev. A Jan 202219

Since the move for DevOps to CI/CD has had some success in most Enterprise IT organizations,
often when looking for a NetOps solution one of these server configuration management tools
are adapted to meet their requirement. Some of the more well-known server configuration
management tools (in no particular order) are Puppet, Chef, Ansible, and Salt. Some now have
support for some network configuration. These tools are purpose built to automate infrastructure
changes. They each have their own architecture and terminology.

Network Automation 2.0: Server Configuration
Management Tools (Scripts+Playbooks)

A server is a machine with an Operating System (OS) that runs third party application software. The
application software is the value of that server. A server with just an OS doesn’t do anything but warms
a room. All application software has their own configuration files and language to control how it runs.
There can be many servers with many running application software instances. This is the problem server
configuration management tools solve. The server configuration management tools define their own
language to install/configure/upgrade applications running on the servers (Cookbooks in Puppet,
Recipes in Chef, Playbooks in Ansible, and Formulas in Salt). This gives operations a tool to manage their
infrastructure with a uniform language that simplifies operations.

Rev. A Jan 202220

Ansible

Ansible Skill Sets Required

 • Basic Linux/Unix
 • Ansible packaging/options
 • YAML
 (language for Ansible Playbooks)
 • Jinja2
 (language for templating)
 • Python
 (to extend Ansible)
 • Data types

• Variables
• Conditionals
• Loops
• Blocks
• Handlers
• Playbook roles
• Plays, tasks, modules,
 parameters
• Repositories (GitHub)

Ansible Components

Open Source (Communities) Red Hat Ansible Automation (Enterprise)

AWX

Ansible

Bottom-up
Influence

RedHat Ansible Tower
OPS - IT Managers, ”Teams”

Top-down
Strategy

RedHat Ansible Engine
DEV - Playbook Authors,”individuals”

Rev. A Jan 202221

Rev. A Jan 2022

Ansible Open Source and Commercial Offerings

Open Source
•	 Ansible (core) is the open source distribution of the automation software platform.
•	 Ansible AWX is the open source version for operational environments.

Commercial
•	 Red Hat Ansible Engine is the Enterprise version of Ansible (core) which is the same code base

and adds support instead of just user communities.
•	 Red Hat Ansible Tower packages feature for Enterprise IT Operations teams which include

adding Role Based Access Control (RBAC), secure storage for network credentials and other
features.

An
sib

le
En

gi
ne

An
sib

le
To

we
r

Au
to

m
at

e
yo

ur

En
te

rp
ris

e

Simple User Interface Tower API

Infrastructure
LINUX
Windows
UNIX

Networks
ARISTA
CISCO
Juniper

Containers
Docker
LXC

Cloud
AWS
Google Cloud
Azure

Services
Databases
Logging
Source Control
Management

Open Source Module Library

Knowledge & Visibility Scheduled & Centralized JobsRole-Based Access Control

Python CodebasePlugins

Transport

Use
Cases

SSM, WinRM, Etc.

Ansible PlaybooksAdmins

Users

Ansible CLI & CI Systems

Configuration ManagementProvisioning APP Deployment

Continuous Delivery Security & Compliance Orchestration

Role-Based Access Control

22

Ansible Architecture

Ansible Elements to Manage Network Devices

To get started with Ansible the first step is installing
Control Node, which must be a Linux or Mac OSX
system and has a dependency of a Python installation.
Ansible then requires three main components to
begin automating network devices:

Inventory This is a plain text file that lists the target
nodes which can include specific devices (hosts)
and groups.

Playbook(s) are Ansible’s configuration,
deployment, and orchestration language. These
define the instructions to describe what actions/
automation is to be done to the network elements
using the Modules. These are written using the
YAML markup language format and are designed
to be human readable. A playbook consists of one
or more plays. Each Play contains one or more
tasks. Playbooks can be written in standard YAML or
an Ansible derivation of YAML.

Modules are device-specific plug-ins that handle
the execution of the playbook on the device.

As depicted in the image, Ansible has integrated
support for transport protocols to connect to network
devices including SSH/CLI, API, and NETCONF.

Unlike using Ansible to automate servers, when
using it for network automation it is configured to
run in local mode where it connects to itself and
runs Python code locally then connects via SSH to
network devices to send CLI commands.

Ansible aims to be idempotent. When executing
a playbook, the existing device configuration
will be checked first, and the playbook will only
execute if the changes do not exist. The reliability
largely depends on the vendor module and the
quality and content of the playbook. Significant
testing is required to ensure consistency and
reliability at scale.

SSH (CLI)

Inventory Playbook Modules

Network Element

API

Network Element

NETCONF

Network Element

Control
Node

Managed
Network
Devices

So
ur

ce
: W

ik
ip

ed
ia

The property of certain operations
in mathematics and computer
science, that can be applied multiple
times without changing the result
beyond the initial application.

Idempotent

Rev. A Jan 202223

Variable and Templates

Variables can be defined in the inventory file as well
as the playbook. Ansible uses the Jinja2 templating
language. For network device automation a good
example of the variables in a playbook are for the
transport protocol:

Network Modules

The majority, if not all, of the Network Modules,
have been contributed by the vendors. While they
are a good place to get started, many will involve
the learning curve to develop, test and eventually
deploy successful automation using playbooks.

For example, Cisco provides modules for IOS,
IOS-XR, and NXOS. The “ios_config” module is
used to send configuration-level commands to
Cisco IOS devices. See the example playbook
snapshot below: As you can see from the above example, the

configuration is similar to native IOS, but there are
specific structures and syntax that must be added
to achieve the desired result. A network engineer
who has CLI/syntax skill set must also learn the
module features and semantic to adapt the native
CLI into the playbook format.

vars:
 cli:
 host: "{{ cisco_router }}"
 username: "{{ username }}"
 password: "{{ password }}"
 transport: cli

- name: configure top-level configuration
ios_config:
 lines: hostname {{ inventory_hostname }}

- name: configure interface settings
ios_config:
 lines:
 - description test interface
 - ip address 172.31.1.1 255.255.255.0
 parents: interface Ethernet1

- name: configure ip helpers on multiple
interfaces
ios_config:
 lines:
 - ip helper-address 172.26.1.10
 - ip helper-address 172.26.3.8
 parents: “{{ item }}”

with_items:
 - interface Ethernet1
 - interface Ethernet2
 - interface GigabitEthernet1

- name: load new acl into device
ios_config:
 lines:
 - 10 permit ip host 1.1.1.1 any log
 - 20 permit ip host 2.2.2.2 any log
 - 30 permit ip host 3.3.3.3 any log
 - 40 permit ip host 4.4.4.4 any log
 - 50 permit ip host 5.5.5.5 any log
 parents: ip access-list extended test
 before: no ip access-list extended test
 match: exact

Rev. A Jan 202224

Ansible Usage for Network Automation

Ansible is a common choice for automating network infrastructure. This
is mainly because of its agentless design. An agentless design means
Ansible doesn’t require a piece of software to be installed in the device
being managed. Many network devices have no capability to install or
run third party software. So, this makes Ansible a good fit.

•	 Create playbooks to auto-generate multi-vendor configurations
•	 Create playbooks with conditional elements to deploy

configuration based on existing state
•	 Create playbooks to read and gather data (configuration and

operational) from network devices

The challenges around creating reusable scripts goes away
with a server configuration management tool

 • The tool takes care of parameter input validation.
 • Ansible defines a separate inventory file independent of its
 Playbook. So, this is how device address and connection
 information is handled.
 • The tool has a standard way to show progress, error
 information and if it succeeded.
 • There is lots of documentation for using these tools.

Things that still have to be considered with Ansible

 • It would still be desirable to put Ansible Playbooks into source
 control to track its changes and be able to rollback.

Using the playbooks

 • Red Hat's Ansible Tower is an enterprise product that users can
 purchase to manage the running of Playbooks.
 • If Ansible Tower is not used then the same issues with using
 scripts applies to Ansible.

Rev. A Jan 202225

Pros And Cons

Ansible Pros

•	 Free software downloads to start

•	 Open source option, strong community, and vendor contributed modules

•	 Leverages Python and YAML, well-established languages to define and extend the
functionality

•	 The breadth of modules to support compute, network, containers, and cloud

•	 Simple tasks can be automated fairly quickly with basic playbooks with the required
skill set

Ansible Cons

•	 Significant skill development required (time and training required)

•	 Playbooks will vary significantly based on author, design choices and skill set

•	 Gets complex quickly to automate complex networking feature (like CERTs, Tunnels,
Routing, QoS…etc)

•	 Difficult to maintain

•	 Significant cost added to use Enterprise Ansible Engine and Ansible Tower

•	 Difficult to transition to other users/ operators

•	 Must add Tower to provide the user interface and integrated functions NetOps has
gotten used to with other management tools (with support)

Rev. A Jan 202226

Enterprise-Grade Capabilities

Gluware is built to simplify network automation and minimize the time to
value. Now on its third generation and built over many years, it provides
a robust feature set to meet the needs of very large enterprise customers
managing complex networks scaling into the tens of thousands.

Automation Platform Checklist

Onboard network feature and define policy in hours with no skill
set gap
Vendor agnostic feature abstraction or leverage native CLI
Automate the brownfield existing network automating as many
or as few network features
Data-model driven and declarative orchestration engine
Support for legacy network configuration and change
management (NCCM)
Multi-domain – supporting automating the LAN, WAN, data
center and more
Multi-user with LDAP integration and rights/roles management
Multi-tenant enabling management of many administratively
separate networks
Ability to extend support to new, emerging virtual
infrastructures leveraging SDN and Network Functions
Virtualization (NFV)
A platform that can help the IT organization adhere to
corporate and government compliance policies, auditing
standards and regulations
Ability to perform secure and reliable changes to the network,
across multi-vendor network devices
Identifiable return on investment (ROI) to ensure alignment with
the business needs
Ability to implement automation quickly, with limited training
and onboarding time
An extensible platform which can grow and change with
evolving business needs

Automation Platform Checklist

Rev. A Jan 202227

Time to Value Comparison

Deployment | 2 Weeks

Ansible Time to Value per Project (est. 6+ months)

Skill Development | 4+ Months

Network Automation | 1 Month Testing | 2 Weeks

Python Time to Value per Project (est. 10+ months)

Deployment
Min-HrsSkill Development | Days

Testing
2 Weeks

Network Automation | 3 Months Testing | 2 Weeks

Deployment | 2 Weeks

Gluware Time to Value per Project (est. >1 month)

Skill Development | 6+ Months

Network Automation | Days

Rev. A Jan 202228

Conclusion
The only thing that’s consistent in the network is
change. Business needs are changing and the way
you’re implementing features on the network is
changing, so the infrastructure you need at the network
layer to move from Development to Operations
needs to resemble the software world’s movement to
DevOps and its continuous integration cycle.

Network engineers are not software developers,
nor should they have to pretend to be. Engineers
today need an orchestration platform that enables
the full integration of modeling, building, testing,
deploying to production, validating and enabling
the continuous integration cycle. This model reduces
friction between Development and Operations.
Whereas formerly these teams would be at odds,
development and operations work closely together

in a DevOps model. Operations provide feedback
to Development, and they have a relationship that
minimizes overhead, inefficiencies and the process
of getting changes out to production.

As organizations look to increase automation the
decision will largely be to build or buy. When going
down the path of building it is critical to understand
the true cost and impact to the business since it will
require significant skill set changes and development
as well as the adoption of software development
standards for maintenance. When looking to buy
automation platforms it is critical to look at the out
of the box functionality and time to value for current
use-cases and those on the horizon. Each of these
decisions will have an impact across the people,
products, and processes within the organization.

For more info visit gluware.com

ANSIBLE® and ANSIBLE TOWER® are registered trademarks of Red Hat, Inc.
GITHUB® is a registered trademark of GitHub, Inc.
PyPI® and PYTHON® are registered trademarks of Python Software Foundation
CISCO® is a registered trademark of Cisco Technology, Inc.
STACKSTORM® is a registered trademark of Extreme Networks, Inc.
PUPPET® is a registered trademark of Puppet, Inc.
CHEF® is a registered trademark of Chef Software, Inc.

WINDOWS® and AZURE® are registered trademarks of Microsoft Corporation.
ARISTA® is a registered trademark of Arista Networks, Inc.
JUNIPER® is a registered trademark of Juniper Networks, Inc.
DOCKER® is a registered trademark of Docker, Inc.
MAC® is a registered trademark of Apple Inc.
GOOGLE CLOUD™ is the subject of the pending federal trademark application
owned by Google, LLC

Ansible
Gluware

GitHub
Jinja2

Netmiko
Paramiko

Pexpect
Python

Python Package Index
YAML

Cisco Image source

https://www.ansible.com
https://gluware.com/
https://github.com/
http://jinja.pocoo.org/
https://github.com/ktbyers/netmiko
http://paramiko.org/
https://pexpect.readthedocs.io/en/stable/index.html
https://www.python.org/
https://pypi.org/
http://yaml.org/
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprisenetworks/
software-defined-access/solution-overview-c22-739012.pdf

References

